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The three-dimensional mixing layer is characterized by both two-dimensional and
streamwise large-scale structures. Understanding the effects of those large-scale struc-
tures on the dispersion of particles is very important. Using a pseudospectral method,
the large-scale structures of a three-dimensional temporally developing mixing layer
and the associated dispersion patterns of particles were simulated. The Fourier ex-
pansion was used for spatial derivatives due to the periodic boundary conditions
in the streamwise and the spanwise directions and the free-slip boundary condition
in the transverse direction. A second-order Adam–Bashforth scheme was used in
the time integration. Both a two-dimensional perturbation, which was based on the
unstable wavenumbers of the streamwise direction, and a three-dimensional perturba-
tion, derived from an isotropic energy spectrum, were imposed initially. Particles with
different Stokes numbers were traced by the Lagrangian approach based on one-way
coupling between the continuous and the dispersed phases.

The time scale and length scale for the pairing were found to be twice those for the
rollup. The streamwise large-scale structures develop from the initial perturbation and
the most unstable wavelength in the spanwise direction was found to be about two
thirds of that in the streamwise direction. The pairing of the spanwise vortices was also
found to have a suppressing effect on the development of the three-dimensionality.
Particles with Stokes number of the order of unity were found to have the largest
concentration on the circumference of the two-dimensional large-scale structures.
The presence of the streamwise large-scale structures causes the variation of the
particle concentrations along the spanwise and the transverse directions. The extent
of variation also increases with the development of the three-dimensionality, which
results in the ‘mushroom’ shape of the particle distribution.

1. Introduction
Understanding the mechanism of particle dispersion in turbulent free shear flows is

important in many industrial, environmental and energy-related processes. The two-
dimensional mixing layer has been extensively studied over the past twenty years (Ho
& Huerre 1984). The associated large-scale organized spanwise vortex structures have
been identified and studied both numerically and experimentally. Extensive numerical
and experimental studies have also been carried out to examine particle dispersion
by organized vortex structures. The large structures have a dominant effect on the
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dispersion of particles over a range of Stokes numbers (Eaton & Fessler 1994; Crowe,
Chung & Troutt 1988, 1996).

Although the two-dimensional large vortex structures are very stable, many exper-
iments (Miksad 1972; Breidenthal 1978; Browand & Troutt 1980) have shown that
they are still subject to three-dimensional instabilities. The scale of three-dimensional
instabilities, which cause the streamwise streaks and contortion of the two-dimensional
rollers, was found to be smaller than that of two-dimensional instabilities (Wygnanski
et al. 1979). The reason for the deformations or corrugations of the two-dimensional
large vortex structures may be due to the presence of the ‘transversally’ oriented
vortices (Breidenthal 1981). The location of the transition to three-dimensionality
for the plane mixing layer varies depending on the magnitude and location of the
upstream perturbations. However, the streamwise vortices were always first found on
the braids between the spanwise vortices (Lasheras, Cho & Maxworthy 1986). While
the developments of two-dimensional instability and three-dimensional instability are
almost uncoupled during the formation of the streamwise vortex tubes, once the vor-
tex tubes form, they undergo nonlinear interactions with the spanwise vortices and
induce, on the spanwise vortex cores, a wary undulation of the same wavelength and
a phase shift of 180◦ with respect to the perturbation (Lasheras & Choi 1988). The
wavelengths of the spanwise vortex structures and the streamwise vortices increase as
the spanwise vortices merge, but the ratio of the two length scales was found to be a
constant (Huang & Ho 1990).

The three-dimensionality of the plane mixing layer has been observed and studied
not only in experiments but also in numerical simulations. The counter-rotating ‘rib’
vortices, which are due to the three-dimensional instability of the mixing layer and
exist in the region between the rollers (the braid region) and extend from the bottom
of one roller to the top of the next one, were also found in most numerical simulations.
The wavelength of the three-dimensional instability was found to be about two thirds
of the wavelength of the two-dimensional instability (Pierrehumbert & Widnall 1982).
The small-scale three-dimensional instabilities were shown to exist in free shear flows
at moderately low Reynolds numbers, and are responsible for the initial development
of the three-dimensionality. And the pairing of the two-dimensional large-scale vortex
structures has a suppressing effect on the growth rate of the three-dimensional
structures. Once the three-dimensional modes reach a finite amplitude, they manifest
themselves mainly as counter-rotating, streamwise vortices that locate on the braids
between the spanwise coherent two-dimensional paring modes and the stabilizing
effect of the two-dimensional structures is reduced (Metcalfe et al. 1987; Moser &
Rogers 1993).

Owing to the improvement of computer techniques, direct numerical simulation is
becoming a very powerful tool to obtain three-dimensional, time-dependent solutions
to the nonlinear Navier–Stokes equations. Spectral methods have been proven to
be the prevailing numerical method for large-scale computations of transitional and
turbulent flows owing to the very high accuracy in space and fast convergence.
However, broad applications of the method are still limited by finite computer
resources and this limitation restricts the simulations to flows with moderate Reynolds
numbers and fairly simple geometries. Spectral method and finite-difference schemes
were used to simulate particle dispersion in decaying isotropic and homogeneous
turbulence (Elghohashi 1994). The pseudospectral method was also employed to
simulate particle dispersion in homogeneous and isotropic turbulence by Yeung &
Pope (1988), Squires & Eaton (1990, 1991a–c) and Wang & Maxey (1993).

Marcu & Meiburg (1996a–c) initiated an investigation on the effect of streamwise
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vortices on the dispersion of particles in a plane mixing layer both in the absence and
in the presence of gravity. The equilibrium points and nonlinear dynamics of small
heavy spherical particles in a steady quasi-two-dimensional flow were studied first. It
was found that only the particles with very small Stokes numbers can accumulate at
the streamwise vortex centres. Particles with moderate Stokes numbers smaller than a
critical value which depends on the dimensionless strain rate and gravity parameter,
tend to orbit around individual streamwise vortices. The features of particle dispersion
in a three-dimensional temporal plane mixing layer were then investigated without
vortex pairing. The presense of the streamwise vortices results in additional dynamical
effects that modify the dispersion patterns of particles. Intense three-dimensional
vortex stretching and folding produces ‘mushroom’ shapes of particle dispersion
patterns.

The object of the present work is to investigate the three-dimensional dispersion pat-
terns of different sized particles in a temporal mixing layer by including vortex pairing
in the development of the flow and using non-forcing three-dimensional perturbations.
Two two-dimensional and two three-dimensional flow cases were simulated first to
ensure the flow field was behaving correctly. Three-dimensional dispersion patterns
of particles with different Stokes numbers were then examined.

2. Numerical approach
The flow field simulated here is a temporally developing mixing layer. The re-

quirement of specifying inflow–outflow-boundary conditions, which is inevitable in
simulations of a spatially growing flow, are avoided. Because the spatially periodic
boundary conditions in the streamwise and spanwise directions can be used for the
temporally developing flow, a more efficient and accurate program can be written
and implemented using the pseudospectral method. In the transverse direction, as
long as the size of the computational domain is large enough, the free-slip boundary
condition can be used.

2.1. Basic equations

2.1.1. Flow field simulation

The non-dimensional continuity and momentum equations for an incompressible
flow with no body force are:

∇ ·U = 0, (2.1)

∂U

∂t
= −∇P +

1

Re
∇2U −U · ∇U . (2.2)

The equations are non-dimensionalized by U0, the velocity difference between the two
parallel free streams, the density of the flow and L0, a length scale. The length scale
is so chosen that the dimensions of the non-dimensional computational domain are
integral multiples of 2π and the size of the domain must be an integral multiple of
the most unstable wavelength. Given λx as the most unstable streamwise wavelength,
the length scale L0 should be equal to λx/2π. However, λx is determined by the
initial vorticity thickness which depends on the initial mean velocity profile. In the
present simulation, the sizes of the computational domain in the three directions are
all chosen to be 4π.
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2.1.2. Particle dispersion

If the mass loading ratio is on the order of unity, the particle volume fraction
will be of the order of 10−3 for most gas–particle flows. In such a flow, the particle
collision can be neglected (Ishii, Umeda & Yuhi 1989). In the present simulation,
the mass loadings for most particle-dispersion cases are of the order of unity or less,
so the flow can be treated as dilute. Therefore, we have the following assumptions
concerning the motion analysis of particles.

(i) All particles are rigid spheres with identical diameter dp and density ρp.
(ii) The density of particles is much larger than that of the fluid.
(iii) Particle–particle interactions are neglected.
(iv) Gravity effect on particles is neglected.
(v) Initially, the particles are distributed uniformly and are in dynamic equilibrium

with the fluid.
With the above assumptions, the non-dimensional motion equation for a particle is

dV

dt
=

f

St
(U − V ) (2.3)

where V is the velocity of a particle, U is the velocity of fluid at the position of the
particle and f is the modification factor for the Stokes drag coefficient. As long as
the particle’s Reynolds number Rep, which is defined as

∣∣U − V ∣∣dp/ν, is less than

1000, the factor f is well represented by f = 1 + 0.15Re0.687
p . St is the Stokes number

of particle, which is defined as the ratio of the particle’s momentum response time to
the flow field time scale:

St =
ρpd

2
p/18µ

L0/U0

. (2.4)

The velocity and position of a particle can be obtained by integrating (2.3):

V n+1 = U + (V n −U )e−f∆t/St, (2.5)

X n+1
p = X n

p +U∆t+ (V n −U )
St

f
(1− e−f∆t/St), (2.6)

where the fluid velocity U and f are taken as constants during the integration.
Because one only has the velocity of the flow field at every grid point, the third

Lagrange interpolating polynomial is used to obtain the flow velocities at the positions
of particles.

2.2. Numerical considerations

2.2.1. Initial flow field

The initialization of the flow velocity field consists of two parts. One is the mean
velocity field and the other is the perturbations to the mean. Since a temporal mixing
layer is simulated, the initial mean velocity field is given as a function of the transverse
direction only and the hyperbolic tangent profile (figure 1) is used here:

U(y) = 1
2
U0 tanh(y/δ) (2.7)

Two different perturbations are used in the present simulation. The first part is
the initial two-dimensional perturbation, which is imposed on the two-dimensional
fundamental and subharmonic unstable wavenumbers, derived from the linear Orr–
Sommerfeld equations (Michalke 1964). It is used to initialize the two-dimensional
simulations and added to all three-dimensional simulations. The second part is the
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Y, transverse

U

U0

Figure 1. Initial mean velocity profile

initial three-dimensional perturbation which is a specific energy spectrum with ran-
dom fluctuating components. The initialization procedure is similar to that used by
McMurtry, Riley & Metcalfe (1989) (see the Appendix).

2.2.2. Numerical procedure

The problem with the numerical algorithm for equations (2.1) and (2.2) is the
absence of an evolution equation for the pressure. The pressure changes, however,
as the velocity evolves in time so the flow field remains non-divergent. An explicit,
fractional time step method, which is similar to the so called ‘projection method’
for incompressible unsteady Navier–Stokes equations (Peyret & Taylor 1983), is
used in the present simulation. All spatial derivatives are computed in spectral
space.

First, the second-order Adam–Bashforth scheme is used to advance the velocity
field to an intermediate time step without the effect of the pressure gradient:

U n+1/2 = U n + ∆t( 3
2
An − 1

2
An−1) (2.8)

where A = (1/Re)∇2U −U · ∇U . Then, at the second step, the Un+1/2 is corrected by
considering the pressure effect:

U n+1 −U n+1/2

∆t
= −∇Pn+1. (2.9)

Taking divergence of equation (2.9) and using the continuity equation, one obtains
the Poisson equation for the pressure:

∇2Pn+1 =
1

∆t
∇ ·U n+1/2. (2.10)

3. Results of flow field simulations
Four flow field simulations were performed as shown in table 1. The case 2D0P

has an initial two-dimensional perturbation imposed only on the fundamental un-
stable wavenumber and the magnitude of the perturbation A(1,0) is 1.0. The case
2D1P has an initial two-dimensional perturbation imposed on both fundamental
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Case A(1,0) A(0.5,0) ε3D

2D0P 1.0 0.0 0.0
2D1P 1.0 1.3 0.0

Low3D 1.0 1.3 0.0005
Pdel 1.0 0.5 0.0005

Table 1. Cases of flow field simulation
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Figure 2. Contours of spanwise vorticity at Z = 0 for the 2D0P case.

and subharmonic unstable wavenumbers and the magnitude of the perturbation on
subharmonic unstable wavenumber A(0.5,0) is 1.3. Low3D is the case where, besides
the initial two-dimensional perturbation, an initial three-dimensional perturbation
with a low magnitude is imposed on the low wavenumbers and the magnitude of
the perturbation ε3D is 0.0005. For the case Pdel a smaller initial perturbation to the
subharmonic unstable wavenumber is imposed, compared to the Low3D case. The
Reynolds number, which is based on the velocity scale U0 and the length scale L0, is
500 for all cases. The computational grids are 65× 65× 65.

The magnitudes of the initial two-dimensional perturbations A(1,0) and A(0.5,0) are so
chosen, as given in table 1, that the time scales of the rollup and the pairing are of the
same order of magnitude as those of Moser & Rogers’ normal pairing case (Moser
& Rogers 1993). The magnitude of the initial three-dimensional perturbation ε3D was
chosen as small as possible but also large enough to produce a three-dimensional
fully developed flow in a reasonable time frame.

Because the computational grids are only 65× 65× 65, the grid system is not fine
enough to resolve all the small scales in the turbulence and the low-resolution problem
was encountered. However, as the development of the large-scale structure is the object
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Figure 3. Contours of spanwise vorticity at Z = 0 for the 2D1P case.

of our simulation, the small structures associated with the high wavenumbers are not
of interest. In the meantime, during the development of turbulence, the mean flow
energy is first transferred to the largest-scale structure and little energy is contained
in the high wavenumbers at that time. This is also why the initial three-dimensional
perturbation is only given to the low wavenumbers.

3.1. Two-dimensional simulations

Because the two-dimensional features have a large impact on the development of
three-dimensionality in the flow, two two-dimensional cases were simulated first.
As no initial three-dimensional perturbation was given, although the flow field is
three-dimensional, the properties of the flow are unique in the spanwise direction.

The contours of spanwise vorticity for the 2D0P case (figure 2) show that the initial
perturbation on the fundamental unstable wavenumber causes the development of the
spanwise Kelvin–Helmholtz rollers. The contours of spanwise vorticity for the 2D1P
case (figure 3) show that the development of the first pairing of two adjacent Kelvin–
Helmholtz rollers, which is caused by the initial perturbation on the subharmonic
unstable wavenumber. During the pairing, a pair of well-developed rollers come
together, corotate and eventually amalgamate to form a new bigger roller. The
spanwise vortices are depleted in the braid region (the region between pairings)
while the pairing is occurring. However, after the pairing, the spanwise vortices are
advected back into the braid region, which is called oversaturation (Moser & Rogers
1993).

We can define some time scales which are associated with the rollup, pairing and
oversaturation (Moser & Rogers 1993). The rollup time, τr , is defined as when the
energy of the two-dimensional fundamental Fourier modes E(1,0) reaches the first
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Figure 4. Development of (a) E(1,0), E(0.5,0) and (b) δm for the 2D0P and 2D1P cases. (a) solid line:
2D0P; dashed line: 2D1P; (b) dashed lines: results from Moser & Rogers.

maximum value. E(1,0) is defined as

E(1,0) =
∑
ky

Cu

∣∣∣
kx=1,kz=0

(3.1)

where Cu = |C1|2 + |C2|2 + |C3|2, and C1, C2, C3 are the Fourier coefficients of three
velocity components U1, U2, U3, respectively.

The pairing time, τp, is defined as when the energy of the two-dimensional sub-
harmonic Fourier modes E(0.5,0) reaches the first maximum value. E(0.5,0) is defined
as

E(0.5,0) =
∑
ky

Cu

∣∣∣
kx=0.5,kz=0

. (3.2)

From the evolution histories of E(1,0) and E(0.5,0) shown in figure 4, we can tell that
the rollup time for case 2D0P is about 10.6, the rollup time for case 2D1P is about
10.8 and the pairing time for case 2D1P is about 21. The rollup time for the two cases
are almost the same, and the paring time is about twice the rollup time. We should
note that the momentum thickness δm also reaches local maximum values around the
rollup time and the pairing time as shown in figure 4. The momentum thickness is
defined as

δm =

∫ ∞
−∞

(0.25−U1(y)
2
)dy (3.3)

where

U1(y) =

∫ Lx/2

−Lx/2

∫ Lz/2

−Lz/2
U1(x, y, z)dxdz

LxLz
. (3.4)

It should also be noted that for the 2D1P case, the momentum thickness at the
pairing time is also about twice that at the rollup time, which means the length scale
of pairing is about twice the length scale of rollup. As the time scale of pairing is
about twice that of rollup, and the velocity scale remains the same, the length scale
should be doubled. The results were also compared with those of Moser & Rogers
(1993) in figure 4.
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Streamwise ribs

Pairing of two spanwise rollers

Figure 5. Sketch of three-dimensional large structures in the mixing layer.

3.2. Three-dimensional simulations

3.2.1. Three-dimensional structures

As mentioned previously, the two-dimensional, large-scale structures are subjected
to three-dimensional instability which can result in counter-rotating ‘rib’ vortices.
They exist in the braid region and extend from the bottom of one roller to the top
of the next. The sketch in figure 5 shows the basic structure of the three-dimensional
large-scale structures in the mixing layer.

The three-dimensional large-scale structures in the present simulation can be shown
by plotting an iso-surface of ωa, which is defined as |ωx| + |ωy| + |ωz|, as shown in
figure 6. The streamwise counter-rotating ‘rib’ structures can also be shown in the
plot of the iso-surface of ωx for two given values as shown in figure 7. The similarity
between figure 6 and figure 5 is apparent. The magnitude of the vorticity is not used
because |ωz| is much larger than the other two components and the three-dimensional
structure is what is concerned. Because the initial three-dimensional perturbation in
the present work is more like a natural small disturbance, the three-dimensional
large-scale structures develop by themselves from the three-dimensional instability.

One should also note that the streamwise ‘rib’ structure has three periods which
means that the dimensions in the spanwise direction are about three times that of
the most unstable wavelength in the spanwise direction λz . Because the dimensions
in the streamwise direction are twice that of the most unstable wavelength in the
streamwise direction λx, and the dimensions in the streamwise direction and in the
spanwise direction are both 4π, λz must be about two thirds of λx. This result also
complies with the previous study of Pierrehumbert & Widnall (1982).

3.2.2. Effects of pairing on the development of three-dimensionality

In the Pdel case, a smaller magnitude initial perturbation on the subharmonic
wavenumber in the streamwise direction is given, which causes a delay in pairing.
This delay results in a longer pairing time and re-entry time, which can be shown
in the development of the momentum thickness δm for the Low3D and Pdel cases as
shown in figure 8.

To study the development of the three-dimensionality, one must define two prop-
erties. The first one, E3D , which represents the total energy in the three-dimensional
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Figure 6. Iso-surface of ωa = 0.45 in grid coordinate. For case Low3D; T = 24.
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Figure 7. Iso-surface of ωx = ±0.24 (blue, positive; green negative) in grid coordinates for case
Low3D; T = 24.
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Figure 8. Development of δm for the Low3D and Pdel cases.
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Figure 9. Development of (a) E3D and (b) Γx, normalized by the initial values, for the Low3D and
Pdel cases.

Fourier modes, is defined as

E3D =
∑
kx

∑
ky

∑
kz 6=0

Cu (3.5)

where Cu = |C1|2 + |C2|2 + |C3|2, and C1, C2, C3 are the Fourier coefficients of the three
velocity components U1, U2, U3 respectively.

The other one is the rib circulation Γx, which is defined as

Γx =

∫ ∞
−∞

∫ λz/2

0

ωxdzdy

∣∣∣∣
MP

(3.6)

where MP is the mid-braid plane. The rib circulation can represent the degree of
three-dimensionality in the mixing layer (Moser & Rogers 1993).

From the development of E3D and Γx as shown in figure 9, one can tell that the
development of the three-dimensionality is suppressed during the pairing and that
the degree of three-dimensionality in the Pdel case is higher than that in the Low3D
case at a later time, which also resulted from the delay in pairing.

Moser & Rogers (1993) also studied the development of the rib circulation for the
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Figure 10. Comparison of the development of Γx. Dashed lines: results of Moser & Rogers.

normal pairing case and the delayed pairing case. Although only three-dimensional
linear perturbations were used in those two cases, the development of the rib circu-
lations for the normal pairing and delayed pairing cases is similar to the Low3D and
Pdel cases respectively as shown in figure 10.

Owing to the limit of computer resources, only 65 × 65 × 65 grids was used for
most of the present work. However, a three-dimensional flow field simulation case
using 129× 129× 129 grid system with the same initial conditions as the Low3D case
was performed. and some results are compared with those of the 65 × 65 × 65 grid
system. Because 65× 65× 65 grids are fine enough to resolve the large structures in
the mixing layer, the development of the momentum thickness, the energy spectrum
on the fundamental and subharmonic unstable wavenumbers, and the development
of the spanwise large-scale vortex structures are almost the same for the two cases.

4. Results of particle dispersion
The dispersion of particles at Stokes numbers ranging from 0.001 to 1000 was

simulated. The flow field of the 2D1P case was used in the two-dimensional particle
dispersion simulation for particles with Stokes number 4 and the flow field of
the Low3D case was used in the three-dimensional particle dispersion simulations.
Initially, there is one particle at the centre of each computational cell and the velocity
of each particle is exactly the same as the fluid velocity at that position. Since there
are periodic boundary conditions in the streamwise and the spanwise directions, the
particles which move out the box in those two directions from one side will be put
back in the box from the other side. The particles which move out the box in the
transverse direction will not be taken back.

The root mean square of particle number per cell over the whole field, Nrms, is used
to determine the overall concentration character of particles. The Nrms is obtained
from

Nrms =

(
Nc∑
i=1

Ni
2/Nc

)1/2

(4.1)

where Nc is total number of computational cells and Ni is the number of particles in
the ith cell. It is noted that Nc = 64× 64× 64 and when T = 0, Nrms = 1.
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Figure 11. Nrms for particles at different Stokes number.

Nrms for particles with different Stokes numbers at different times is shown in figure
11. It is obvious that the particles with Stokes number of order of unity apparently
have larger Nrms values and the value of Nrms increases with time. However, one
should notice that the Stokes number at which Nrms reaches the maximum value is
not unique at different times. At T = 12, the particles with Stokes number of 2 have
the highest value of Nrms. But at T = 28 the particles with Stokes number of 4 have
the highest value of Nrms. It is well known that the large-scale structures have the most
significant effect on the dispersion of the particles when the aerodynamic time scale is
of the same order of magnitude as the flow field time scale. From the results of flow
field simulation, one knows that the flow field is dominated by the Kelvin–Helmholtz
rollers around T = 12 and by the pairing of rollers around T = 28, and the time
scale for the pairing is twice that of the rollup. For this reason the value of Nrms

peaks at a Stokes number equal to 2 when T = 12 and at a Stokes number equal to
4 when T = 28.

In order to study the detailed pattern of particle dispersion, a thin slice concept
is used here. The plane concept used in the discussion of particle dispersion always
corresponds to a thin slice with the thickness of a computational cell. For example,
when an (X,Y )-plane at Z = 0 is referred to, a thin slice with 0 6 Z < 4π/64 is what
it actually means.

4.1. Effects of two-dimensional large-scale structures

The different dispersion patterns for the particles at different Stokes numbers can be
examined by the distribution of particles in a certain (X,Y )-plane as shown in figure
12. While the particles with small Stokes numbers follow closely the fluid elements,
the particles with Stokes numbers of the order of unity tend to accumulate near
the circumference of the two-dimensional large structures. The different dispersion
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Figure 12. Distribution of particles in the Z = 0 plane at T = 28.

patterns for particles with different orders of Stokes numbers were also found in
previous two-dimensional experimental and numerical studies (Chein & Chung 1988;
Wen et al. 1992). The particles with large Stokes numbers tend to be depleted from
the core area of the large structures and accumulate in area of high strain and low
vorticity, which is consist with Wen’s ‘stretching’ hypothesis (Wen et al. 1992). This
trend was also found in a homogeneous turbulent field by Squires & Eaton (1990).

The dispersion patterns for the particles with a Stokes number of 4 at different
times are shown in figure 13. The tendency for particles with Stokes number of the
order of unity to accumulate at the periphery of the large-scale structures is evident.
The re-entry of the spanwise vorticity at T = 36 shifts the positions of the maximum
particle concentration inward (toward the mid-braid planes).

The root mean square of particle number per cell for each (Y ,Z)-plane, Nrms(x),
is used here to quantify the concentration pattern of particles along the streamwise
direction which is mainly governed by the two-dimensional large-scale structures.
Nrms(x) is obtained from

Nrms(x) =

(
Ncp∑
i=1

Ni(x)2/Ncp

)1/2

(4.2)

where Ncp is total number of computational cells in one (Y ,Z)-plane and Ni(x) is
the number of particles in the ith cell in that (Y ,Z)-plane. In the present simulation,
Ncp = 64× 64.

Figure 14 shows how the particles with different Stokes numbers concentrate along
the streamwise direction. The particles with Stokes number equal to 4 have almost
the same value of Nrms(x) in the middle of the box, but a much larger value of Nrms(x)
around the mid-braid plane. This shows that the particles with this Stokes number are
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Figure 13. Distribution of particles at St = 4 in the Z = 0 plane.
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Figure 14. Nrms(x) for particles with different Stokes number at T = 28.
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Figure 15. Nrms(x) for particles with St = 4 at different times.

thrown out by the large-scale structures and accumulate around the mid-braid plane.
While the concentration of the particles at small Stokes numbers does not vary very
much along the streamwise direction, the particles at large Stokes numbers tend to
accumulate in the (Y ,Z)-plane where the centre of the pairing lies (This (Y ,Z)-plane
is denoted as the mid-pairing plane.) The difference in Nrms(x) for the particles with
Stokes number of 4 at different times is shown in figure 15. It is apparent that the level
of particle accumulation increases with time, and the positions of the (Y ,Z)-planes
in which the particles accumulate most move toward the mid-pairing plane.

Another way to quantitatively study the dispersion scales of different particles due
to the two-dimensional large-scale vortex is to evaluate the dispersion function in
the Y (vertical) direction for particles initially distributed on the Y = 0 plane. The
dispersion function is defined as

Dy(t) =

(
1

Np

Np∑
i=1

(Yi(t)− Ym(t))2

)1/2

(4.3)

where Np is the total number of particles and Ym(t) is mean value of particle
displacement in the vertical direction at time t. Figure 16 shows the dispersion
function of particles with Stokes number ranging from 0.01 to 100. At small time,
particles with Stokes number of 0.01 show more dispersion. However, as the time
increases, the particles with Stokes number of the order of unity are more dispersed
due to the development of large-scale vortex structures and the preferential effect
of the structures on particle dispersion. For particles with large Stokes number,
the dispersion varies smoothly with T 2. These results are consistent with the two-
dimensional result obtained by Chein & Chung (1988).
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Figure 16. Time-dependent particle dispersion in the vertical direction.
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Figure 17. Distribution of particles in the mid-braid plane at T = 28.

4.2. Effects of streamwise large-scale structures

The different dispersion patterns for particles with various Stokes numbers near the
mid-braid plane at T = 28 is shown in figure 17. At this time, the spanwise vorticity
is depleted from the mid-braid region, so the particles accumulate near the Y = 0 line
due to the effect of the large-scale spanwise vortex structures, except for particles with



78 W. Ling, J. N. Chung, T. R. Troutt and C. T. Crowe

5

–5

0

0 5–5

5

–5

0

0 5–5

5

–5

0

0 5–5

5

–5

0

0 5–5
z z

y

y

T =12 T = 20

T = 36T = 28

Figure 18. Distribution of particles at St = 4 in the mid-braid plane.

large Stokes number. For a Stokes number of 4, most of the particles accumulate near
the Y = 0 line and the streamwise vortices appear to cause the particle concentration
to vary along the spanwise direction. Figure 18 shows the dispersion pattern for
particles with St = 4 near the mid-braid plane at different times. The dispersion
pattern at T = 36 is caused by both the re-entry of spanwise vorticity and the
fully developed streamwise vortices. Typical ‘mushroom’ structures which are caused
by pairs of counter-rotating streamwise vortices are evident here. The ‘mushroom’
shapes of particle distribution were also observed by Marcu & Meiburg (1996c). The
‘mushroom’ shapes here are not as regular as those in the study of Marcu & Meiburg
because the non-forcing three-dimensional perturbation is used here.

When the spanwise vortices first re-enter the mid-braid plane, the strengths of the
spanwise and streamwise vortices should be of the same order in the mid-braid plane.
Figure 19 shows the effects of the streamwise and spanwise large structures at this
time on the dispersion of particles with Stokes number of the order of unity in the
mid-braid plane.

Another (Y ,Z)-plane used to examine the dispersion pattern of particles is the
mid-pairing plane. The different dispersion patterns for particles with different Stokes
numbers in this plane are shown in figure 20. As the mid-pairing plane corresponds
to the (Y ,Z)-plane through the X = 0 line in figure 12, it is clear that the particles
with Stokes number of the order of unity accumulate most on the circumference of
the two-dimensional large structures while the small and large particles distribute
more evenly in the (Y ,Z)-plane. The variation of the distribution of particles along
the Z-axis is due to the streamwise vortices. The dispersion patterns for particles with
St = 4 in the mid-pairing plane at different times are shown in figure 21. At T = 12,
the particles are distributed evenly along the Z-direction because the streamwise
structure is still developing. With the development of the streamwise structures, the
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Figure 19. Distribution of particles at St = 3 in the mid-braid plane at T = 32.
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Figure 20. Distribution of particles in the mid-pairing plane at T = 28.
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Figure 21. Distribution of particles at St = 4 in the mid-pairing plane.

variation of particle concentration along the spanwise direction increases and some
particles ‘burst’ out from the high concentration area due to a pair of counter-rotating
‘rib’ vortices and finally develop a mushroom shaped distribution.

The root mean square of particle number per cell for each (X,Y )-plane, Nrms(z), can
be used to study the concentration pattern of particles along the spanwise direction.
The value of Nrms(z) is obtained from

Nrms(z) =

(
Ncp∑
i=1

Ni(z)
2/Ncp

)1/2

(4.4)

where Ncp is the total number of computational cells in one (X,Y )-plane and Ni(z)
is the number of particles in the ith cell on that plane.

It is obvious from figure 22 that the variations of the concentration of particles
along the spanwise direction for small particles and large particles are minimal, but
the variations are much larger for particles with Stokes number of 4 and the variations
increase with time as shown in figure 23. The higher concentration for particles with
Stokes number of the order of unity in (Y ,Z)-plane, which is due to the effect of both
two-dimensional large vortex structures and the counter-rotating streamwise vortex
structures, was also observed by Marcu & Meiburg (1996c)

The dispersion function in the Z (spanwise) direction can be used to quantitatively
study the spanwise dispersion scales of different particles which are initially distributed
on the Z = 0 plane. The function can be defined as

Dz(t) =

(
1

Np

Np∑
i=1

(Zi(t)− Zm(t))2

)1/2

(4.5)
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Figure 22. Nrms(z) for particles at different Stokes number at T = 28.
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Figure 23. Nrms(z) for particles at St = 4 at different times.

where Np is the total number of particles and Zm(t) is the mean value of particle
displacement in the spanwise direction at time t. Figure 24 shows that the particles with
smaller Stokes number have larger dispersion in the spanwise direction. Compared
to figure 16, the dispersion scale in the spanwise direction is much less than that
in the vertical direction. This is due to the large difference in the scales of the two-
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Figure 25. Contour plot for when the number of particles per cell is 3 for St = 4 at T = 28.

and three-dimensional vortices. One should find that there are noticeable waves in
the plot of the spanwise dispersion function for particles with small Stokes numbers,
probably due to the effects of Kelvin–Helmholtz rollup and pairing.

Figure 25 displays the contour of all the cells where the number of particles in each
cell is three for the case of St = 4 at T = 28 in the entire flow field. It shows how the
particles distribute in the entire three-dimensional flow field. The particles concentrate
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not only on the circumference of the two-dimensional large-scale structures, but also
at some specific positions along the spanwise direction.

5. Conclusions
With a pseudospectral method, the three-dimensional temporally developing mixing

layer has been simulated. The time and length scales of the Kelvin–Helmholtz rollup
are found to be half those of the pairing of the two adjacent rollers. The simulation
shows that the well-known streamwise large-scale structures develop from the initial
perturbations and are characterized by the counter-rotating ‘rib’ vortices, which exist
in the braid regions and extend from the bottom of one pairing vortex to the top
of the next. The fundamental unstable wavelength in the spanwise direction is also
confirmed to be about two thirds of that in the streamwise direction. The pairing has
an apparent suppressing effect on the development of the three-dimensionality of the
mixing layer and the large-scale streamwise structures can only be fully developed
some time after the pairing completes.

The results of particle dispersion show that the dispersion of particles in three-
dimensional mixing layers are still mainly dominated by the two-dimensional large-
scale structures and that particles with Stokes number of the order of unity tend to
concentrate mostly on the circumference of the two-dimensional large-scale structures.
Owing to the different time scales of the rollup and the pairing, the Stokes numbers
at which the particles concentrate most are different at the rollup time and the
pairing time. However, the effect of the streamwise large-scale structures on the
dispersion of particles is noticeable and increases with the development of the three-
dimensionality of the mixing layer. While the two-dimensional large-scale structures
move the particles at certain Stokes numbers towards the circumference of the
structures, a pair of counter-rotating ‘rib’ vortices can transport the particles in or
out the two-dimensional large vortex structures which results in the mushroom shape
of the particle distribution.

The authors would like to thank Professor Jim Riley of the University of Wash-
ington and Dr. Pat McMurtry who provided the initial version of the computational
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Appendix. Three-dimensional perturbation specifications
First, a three-dimensional isotropic energy spectrum is specified on low wavenum-

bers:

Eu(k) = ε3D
k2Λ3

(1 + k2Λ2)3
(A 1)

where k is the magnitude of the wavenumber vector k, Λ is a integral length scale
and ε3D determines the level of the perturbations. The energy spectrum is related to
a stream function Ψ (x) by following steps:

(i) obtain Eψ(k) by Eψ(k) = 2
3
k2Eu(k),

(ii) obtain ψ(k) by ψ(k) = [(∆k/N(k))Eψ(k)]1/2,
(iii) obtain Ψ (k) by adding a random phase to each k of ψ(k),
(iv) transfer Ψ (k) from spectral space to physical space to get Ψ (x),
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where N(k) is the number of modes between wavenumber k and k + ∆k. Finally, an
incompressible velocity field is obtained from the stream function:

U (x) = ∇ × (I(y)Ψ (x)) (A 2)

where I(y) is a form function used to specify a chosen r.m.s. profile (figure 26) of the
fluctuating velocity.
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